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We have performed a systematic study of several contour dynamical algorithms for the 
Euler equations for short times. We have used the Kirchhoff elliptical vortex alone and subject 
to weak perturbations. We have found that if the initial placement of nodes is such that the 
internodal distance is proportional to (curvature)-P where p z f then errors in short time 
calculations are minimized. This follows because the node density is invariant in time. 0 1988 

Academic Press. Inc. 

1. INTRODUCTION 

1.1. Contour Dynamics 

Contour dynamics, a generalization of the water-bag model, was first applied to a 
plasma physics problem by Berk and Roberts [l]. They investigated numerically 
the evolution of the two-dimensional distribution function f(x, u, t) where x is a 
spatial dimension and z, is a corresponding velocity dimension. Contour dynamics 
in two spatial dimensions was first investigated by Zabusky et al. [2] for the 
incompressible Euler Equations. Contour dynamics is a boundary-integral 
evolutionary method and is an exact representation for a large class of two- 
dimensional flows where the sources of the flow are piecewise constant densities [3]. 
That is, the velocity of every point on a contour is given as the derivative of a 
streamfunction or potential, which is obtained by integrating over all contours or 
by solving coupled integral equations associated with all contours. If we also 
include singular vortex or dipole sheets, then these numerical studies originate with 
Rosenhead’s [4] investigation of the roll-up of a vortex sheet. (See the recent work 
of Krasny [S] and Pullin and Phillips [6].) For the Euler equations in two dimen- 
sions, contour dynamics may be viewed as complementary to the continuum 
algorithmic approach of finite-difference, finite element and pseudospectral 
methods, where the vorticity, the source of the flow, is expandable in a Taylor 
series. 
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In the vortex or dipole sheet representations, the source density majr become 
singular after a finite time. To compute beyond this time, one must intr 
regularization procedures. For example, Zabusky and Overman [7] intro 
continuum tangential procedures to model aspects of diffusion and dis~~rs~~~ 
operators and applied these methods with great success to the ionosphere plasma 
cloud problem. [S] Also, Aref and Tryggvason [9] have used the dispersive 
regularization inherent in vortex-in-cell codes and Krasny [5] has recently 
investigated carefully the small-distance cutoff in a procedure called the “blob” 
method. For these and the Euler equations with piecewise-constant vorticity, one 
must also deal with numerical inaccuracies introduced when contours develop high 
curvature regions (or possibly), corners or cusps, or when contours a roach 
closely. Recently, Dritschel [lo] has introduced an adaptive contour “surgery” 
algorithm which cuts and rejoins approaching contours to maintain th 
integration at times beyond the early phase discussed in this paper. 
procedure avoids the computationally demanding large growth in nodes but 
introduces small systematic errors in conserved quantities. 

In research in progress we are examining the numerical order of accuracy of 
algorithms discussed below when a node adjustment algorithm is a part of the 
evolution. 

1.2. Objecrives 

There has not been a systematic study of accuracy of time-dependent 
algorithms. Wu et al. [ll] used second-order accurate spatial dis~ret~za~~~ 
algorithms with node placement adapted to curvature to find V-states, 
states of the Euler equations in rotating and translating reference frames. 
and Zabusky [S] investigated the accuracy of time-dependent CD al 
plasma clouds by comparing results with growth rates of linearized 
analyses. 

Hn this paper, the first in a series of two papers, we address the problem of 
ing nodes on the contour initially so that the error in short time ~a~c~latio 
minimized. We present a systematic study of the evolution of one contour at 
times with three second-order algorithms and one third-order algorithm. An i 
tant feature is the initial placement of nodes as a function of local curvatu 
criteria for accuracy include: comparing the true and numexically computed 
velocities of Kirchhoff ellipses (containing piecewise-constant vorticity) with and 
without small-amplitude harmonic perturbations and comparing the evol~~i~~ of 
invariant quantities and non-invariant quantities of the Euler equations. 

In Section 2 we present the numerical algorithms and their spatial d~screti~~tio~. 
In Section 3 we discuss node placement algorithms. In Section discuss 
temporal discretization. In Section 5 we compare the accuracy with W~~~Q~~ 

temporal. evolution and show that errors are minimized if bhe internod stance is 
proportional to (curvature)-P where p z f. In Section 5 we also present the result 
for a 4-fold symmetric V-state in which case p x t minimizes the error. In Section 6 
we discuss our results and indicate future directions. 
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2. CONTOUR DYNAMICAL ALGORITHMS 

2.1. Continuous Representation 
Incompressible inviscid vortex motion in two dimensions can be described in 

vorticity-stream function form by the equations 

d,orw,+uu,+vuy=O, (2.1) 

-w=uy-v,=Ayl= ul,,+ Yyy, (2.2) 

(4 0) = (44 Y, t), 4x5 Y, t)) = cul,, - Yx), (2.3) 

are w, Y, and (u, v) are the vorticity, stream function, and velocities, respectively. 
Using the Green’s function, G = -(274 - ’ log(#), for the unbounded domain, we 
obtain 

where 

(2.4) 

We assume that CO is constant in the domain Dj, differentiate the streamfunction, 
apply Green’s theorem to convert a domain integral to a line integral, or obtain 

(u, 0) = -GW-l c Cwlj IaD lodr%&, 4). 
i 

(2.5) 

The sum in (2.5) is taken over all boundaries, i?D,, of piecewise constant vorticity 
regions, Dj, and [wlj denotes the difference of vorticity densities (inside-outside) 
associated with contour JD,. 

We integrate by parts and obtain 

(u,v)= -(27tZ)-*c [wljs,, (x-t, y-q)r-‘dr’. (2.6) 
1 I 

The discretized version of (2.5) with I= 1 and of (2.6) with I= 1 and I= 2 is 
designated as the LG,, Rl, and R2 algorithms, respectively. Note that the effective 
integrand, (x - 5, y - q) r-l of (2.6) is nonsingular, whereas, the integrand of (2.5) 
has a logarithmic singularity. This result is important for numerical and theoretical 
use. 

If a point in the field is on a vorticity contour it always remains on the contour. 
Thus the equations of motion of the contours are 

2 = UC% y), %= v(x, Y), 

where (x, y) E dD. 

(2.7) 
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2.2. Spatial Discretization 

For our second-order algorithms, the contour, 
N-polygon with N nodes x1, . . . . xN (x1 = xN+ 1) on 
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83, is approximate 
the contour. The integral for 

(u, v) over dD are then replaced by a sum of N integrals, one for each segment 
xkxk + r (1 <k 6 N). When this integration is done exactly, the LG, algorithm is 
obtained. Dritschel [lo] has obtained a third-order which we call LG,, by 
generalizing this method. He introduced the local cubic polynomial qn(p) to inter- 
polate contours between node x, and node x,+ r. Thus 

x(Pl=(x,, Y,)+P(dx,,dY,)+I1,(P)(-dY,,dx,), (2.8) 

where 

Yln(P)=%P+PnP2+YnP3~ O<pdh. (2.99 

The coefficients a,, pI1, and y,, and Y,, are determined from 

vln(l)=O, @) = Jcn, 4lf=fG+1, (2.10) 

where-K, is the curvature at node x,, approximated by the inverse radius of a circle 
fitted to the nodes n - 1, n, and n + 1. The result is given by the following collection 
of formulas 

(u, v)= -(2n)-1 c [o-Ji 2 (GLz’+ GL3))(dx,, dy,)+ c?;~‘(-A~,, Ax,), (2.11) 
i n=l 

where [oli is the vorticity jump (inside-outside) of the jth contour. For x f x, or 
x ??+I, 

CL*) = 1 -log h, - ia,& - $bn( 1 - d,) - ciz,, (2.12a) 

GL3) = c,CP, + (+ + 24J yn + Mb, - a,) + WLI, (2.12b) 
CY’ = y,(d,)/d, + Jpn + (f + $d, - cf;) yn + 1 g,(b, - a,) - c~z,f,,, (2.12~) 

where 

a, = log( cf + d;), (2.13) 
b, = log(c: + (1 - d,)‘), (2.14) 

cn = C(Y - YJ k - (x -x,) ~Y,l/hK, (2.15) 

A = C(x - x,) Ax, + (Y - v,) 4,llh~, (2.14) 
kl=xn+1--%, ~Y,=Y*+l-YY,, h: = i.%J2 + (4d2, (2.17) 
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fn = (~VnPP)ld, - Chn, (2.18) 

gn = %z(4) - &cl + 3&&z), (2.19) 

(2.20) 

For x =x,, 

GL2’ = 1 - log h,, GL3) = 0, e; = a, + ;pn + fy,, (2.21) 

and for x=x,+,, 

GA2) = 1 - log h,, Gi3’ = 0, Q3) = f/3, + gy,. (2.22) 

If CL31 = eL3) = 0, we recover the second-order accurate algorithm, LG,, introduced 
by Overman and Zabusky [12]. When x is inside the circle whose diameter is the 
segment connecting two adjacent nodes x, and x, + 1, the formula is not valid in 
(2.12a) and Dritschel shifts the segment (x,, x,, i) p arallel to itself by q(p*), where 
p* = d,,. In our simulations we have also used his modified formulas, when required. 

We now study two other second-order accurate algorithms, Rl and R2. These are 
faster then LG, because they do not involve any transcendental functions. Further- 
more, R2 does not even involve square roots. These are obtained from (2.6) with a 
midpoint integration rule as 

(U, 0) = (2711)-l C [W]j 2 (AU,, All,) d(rL), (2.23) 
i TZ=l 

where the j-sum is over all the contours and 

(~hhJ=(x-x,+1,2, Y-~~+~~~)r;i~,~, (2.24) 

(x*+1,2> Yn+1,2)=t(xn+xn+1~ Yn+Y?z+lh (2.2.5a) 

ri = = (x - x,)~ + (y - Y~)~, (2.25b) 

rt + l/2 =(X--X,+1,2)2+(Y--y,+1,2)2, (2.25~) 

d(rl)=rrf,+, -rft. (2.25d) 

In Section 5 we compare properties of these algorithms. Although it seems that 
the argument of the sum in (2.23) is singular if x lies on the line between x, + i and 
x,, the singularity is only apparent. For I= 1, the argument may be written as the 
product of r;i &r, + 1 - r,)(x - x, + 1/2, Y - yn + 1,2). As x approaches x, + 1/2, the 
pair approaches (cos ~1, sin a) (r,+ 1 - r,), where CI is the angle between the x-axis 
and the line between x and x, + 1,2. For I= 2, (Au,, dv,) drf, is a product of a finite 
number and a number 0(/z,). Hence these formulas are nonsingular. 
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All algorithms lose accuracy as different contours or different regions of the same 
contour approach closely. However, Rl and R2 lose accuracy much faster than 
LG, and LG,. 

3. INITIAL NODE PLACEMENT 

3.1. Introduction 

The study of accuracy of numerical discretization procedures usually begins with 
equally spaced meshes. However, the motion of nodes on a contour is usually non- 
uniform and the internodal distances are constantly changing. Thus it is obvious 
that to avoid very large and very small intervals one must employ an adaptive 
node placement algorithm. A step in this direction was taken by Zabusky and 
Overman [13]. They developed an algorithm where the internodal distance was 
inversely proportional to the absolute value of the local curvature K and sat~s~~~ 
constraint conditions. The curvature was obtained by fitting cubic splines to the 
coordinates of the curve (x(s), v(s)), and then differentiating. Note that adaptive 
techniques are also being considered for finite difference methods by Sanz-Serna 
and Christie [14]. However, the idea of using a function of the curvature as the 
internodal distance was not employed in their work. We will not consider the 
most general theory for this process at the present time, for the precise Iocation of 
the nodes is not essential. 

We now generalize the work in [13] by relating the internodal distance to a 
power of the curvature. We motivate this procedure by considering the ~ir~b~o 
ellipse and find in a time-dependent sensitivity study (described in Section 5) t 
p = j gives the best results for it maintains a st~tio~~r~ distribution of nodes on the 
rotating contour. 

3.2, Initial Node Placement on Convex Curves 

Our internodal spacing algorithm for convex curves is based on the formula 

ds c 
&=xp’ (3.1) 

where s is the arc length, K is the curvature, and c and p are constants. p is a 
parameter such that the points are uniformly distributed in ,u. 

We first consider the ellipse (x, y) = (a cos q, b sin q), where q is the a~~~la~ 
variable in elliptical coordinates. Hence, the curvature and differential arc length 
are 

I N R I 
K = ;x;+-y:);2 = 

ab 
( a* sin2 q + b2 cos* q)3’2’ 

(3.2) 

(ds)2 = (dx)* + (dy)2 = (a* sin2 4 + b2 cos2 q)(dq)‘, (3.3) 
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ds (fzbp3 
-=-p-. 4 

(3.4) 

From (3.2)-(3.4), we obtain the relation between n and ,U 

dp = @b)“3 - iP-‘/3 dq,/[b* + (a’- b2) sin2 q](Q--1)/2 
C 

or 

Pl -po=c3 
s 

‘l ’ 
4 

‘lo [b2 + (a2 - b2) sin2 yl](3P-1)/2’ (3.5) 

Thus, p = 4 yields an equal spacing in ‘1. 
To initialize the ellipse, we distribute points on the first quarter of the ellipse 

according to (3.5). We take q. = p. = 0 and, to determine c3, we take ,u = N/4 at 
vi = 7r/2, corresponding to N points on the entire ellipse. We evaluate (3.5) 
numerically and determine c3, with the trapezoidal rule using very many ( w 103) 
equally spaced points in QY Then we interpolate linearly to obtain the value of qk 
corresponding to integer values of pk. After obtaining the point distribution on the 
first quarter, we can obtain the point distribution on the remainder of the ellipse by 
reflection. A similar procedure is used for figures with higher m-symmetries, e.g., 
m = 4 in Section 7. 

4. TEMPORAL DISCRETIZATION 

The motion of points on the contour is given by the pair 

where (u, u) are obtained as line integrals discussed in Section 2. Thus at any time 
step we solve 2N ordinary differential equations where (u, u) are given in the 
discrete representation (2.11), (2.23), etc. In this study we are interested only in 
errors arising from spatial discretization and node placement methods. To minimize 
temporal discretization errors we choose the fourth-order Runge-Kutta method 
and a sufficiently small time step so that all figures shown are significant. 
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5. STATIC AND TIME-DEPENDENT ACCURACY COMPAXISONS 

5.1. Introduction 
In this section we compare the accuracy of the integration and node placement 

algorithms for both static and time-dependent runs. We introduce the analytical 
formulas in Section 5.2 and present the comparisons in Sections 5.3 and 5.4. The 
term “relative error” for a scalar s throughout the comparison is defined as 
(sc-s*)/s*~ where s, is the computed value of s and s* is the true value of s. The 
term “12 error” for a vector v (the discrete representation of a function) is defined as 
j/v,. - v*l~/[lvJ, where I/ * (/ indicates the &norm. 

5.2. Analytical Results 
An elliptical distribution of vorticity is a steady-state solution of the Euler 

equations with angular velocity 

!2 = o,ab/(a + b)2, (5.1) 

where a and b are the semi-major and semi-minor axes, respectively, and oO is the 
vorticity [16]. The path of the particles on the ellipse in the laboratory frame at 
time t is given by 

x = $(a + b) cos(2Qt + a,) + 1(a - b) ~0s cO, 
(5.2) 

y = $(a + b) sin(%Ot + crO) - $(a - b) sin co, 

where go is a parameter. The velocity (u, V) if a particle on the ellipse is given by 

w0a 
u= -- Y> 

mob 

a+b 
u=-------x 

a+b . 

Next we summarize Love’s result [ 171 for the linear theory of perturbations on 
an ellipse. Elliptical coordinates (t, q) are related to Cartesian coordinates (x, ,v) by 

(x, y) = c(cosh [ cos q, sinh c sin q), c2 = a2 - b2, 

and the ellipse is 

5 = to = i log[(a -t b)/(a - b)], Qdq<2272. (5.4) 

Note, (x, v) are the coordinates relative to a frame fixed in the ellipse. In the linear 
perturbation analysis, to is replaced by to + <i(q, t)(tl /to << 1 ), where 

and 

r,=h; 
[ 

C c(,( t) cos rnq + b,(t) sin mq) (5.6) 
m 

hi = (a’ sin2 q + b2 cos2 q)-l= (2/c2)(cosh 2to - cos 211)-l (5.7) 
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is the inverse of the Jacobian of the transformation. According to the linear 
analysis, a,(t), p,(t) are proportional to eiu’ or e’“‘, where 

d = c,d, (c,d, > 0) or cc2 = -c,d, (c,d, <O), 

a-b m 
--11 - ( )I a+b ’ 

(5.8) 

a-b m ( )I a+b . (5.9) 

When m = 1, which corresponds to a displacement of the ellipse, c,d, > 0, the 
motion is stable. When m = 2, the contour remains elliptic, c,d, = 0. When m = 3, 
c,d,,, > 0 for a/b < 3.0 and c,d, < 0 for a/b > 3.0. When m > 3, c,d, > 0 for all a, b. 
Thus, for m = 3 and a/b > 3.0, the motion is unstable. 

If we choose m = 3 and r2 = E cos my initially, then at any time t, 

sin ot sin rnq , when c, d, >O, (5.10) 

or 

r2 = e cash at my - when c,s, < 0. (5.11) 

To determine the quantity t2 = [,/hi from the numerical values of (x, y) at later 
times, we first find the major axis of the ellipse (perturbed or not) by fitting a spline 
to all points and then calculating second-order moments. We find the coordinates 
(2, 9) by rotating our coordinate system to coincide with the major axis. (This 
compensates for the error in the rotation of the corresponding unperturbed ellipse.) 
We use formula (5.4) to find the corresponding elliptical coordinates ([, 4). Thus, 

t2 = ($- &MCXrj). (5.12) 

5.3. Static Comparisons 

In the study of steady-state solutions [ 111, we showed that rotating V-states 
satisfy the nonlinear integrodifferential equation 

-udy+vdx=SZRdR, (5.13) 

where all variables U, v, x, y, and the polar radius of the contour R are functions of 
the polar angle 8 and Sz is the derived angular velocity. For our purpose we arrange 
(5.13) and define the local angular velocity as 

Q,-2(v-u$@dR’/dx). (5.14) 
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For the (a, b) ellipse this is 

Q@=(a2yv+b2XU)/[(a2-b2)Xy]. (5.f5) 

We then compute Q, for the values of (x, y) used, and obtain QRB for 0 = 30” a 
6 = 60” by cubic spline interpolation. To obtain a global angular velocity, we 
integrate (5.13) in a quarter ellipse and obtain 

2 
s 

AYk - (Vki 1+ Uk) Ax,. (5.17) 
k 

In Fig. 1, we compare 452,,/52 = (O,, - Q)/Q vs p for the three algorithms in 
static case (without time evolution). The comparisons are made with two ellipses, 
2 : 1 and 4 : 1, and two discretizations, N= 32 and 64. Here we see a monotonic 
variation in all the curves. For LG, and RI, 4Q2,r = 0 for p = p*, where + 9 p* < $ 

I / 
2:1, 32 points 

0.01 

AC+@ o 

0.01 0.01 

0 0 

-0.01 -0.01 

-0.021 -0.021 B. B. 3 -0.02 3 -0.02 
0 0 0.25 0.25 0.50 0.50 0.75 0.75 1.00 1.00 0 0 0.25 0.25 0.50 0.50 0.75 0.75 1 1 .oo .oo 

-0.01 

I 
4:1, 32 points 1 

5.0 I 
2:1, 64 points 

-2.5 

0 0.25 0.50 0.75 1.00 

P 

5.0 

2.5 

FIG. 1. AB,,/Q vs p for 2: 1 and 4: 1 ellipses with the LG,, RI, R2 methods, N = 32 and 64. Square 
symbol represents the result of the LG, method, circle the Rl method and triangle the R2 method. 
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and t d p+ < $ for R2. We conclude that we can always find p*, where AQ,, = 0. 
Note that p* is insensitive to N, weakly dependent on a/b, and somewhat more 
dependent on the integration algorithm. We note but do not show that the relative 
errors of Q, for 8 = 30” and 60” have the same features as AsZ,,/l2. The I, error in u, 
v has a minimum at the place close to p*. The relative error of Sz,, and the 1, error 
of (u, v) are shown in Table I for the cases of a 2 : 1 ellipse with N = 64, and the 
LG, and LG? methods. The ratio of CPU times for the LG,, LG2, Rl, and R2 
methods is 6.7:2.2:1.6: 1.0 on the VAX 8600 (using double precision) and 
6.2: 1.3: 1.1: 1.0 on the CRAY XMP-48. 

Comparable results for time-dependent runs of an unperturbed ellipse are 
also shown in Table I. Errors are evaluated after one revolution, T= 9x= 28.27 

TABLE I 

Comparison Study for a 2: 1 Unperturbed Ellipse with N = 64, 
Using the LG2 and LG3 Algorithms 

12P 

Static 

AQ,,lQ 

I2 error 
in (u, u) 

Dynamic (dt = 0.141) 

Mean error 

AQAlQ AQOlQ in 4, 

LG2 0 0.230( -2) 
1 0.162( -2) 
2 0.104( -2) 
3 0.521(-3) 
4 0.455( -4) 
5 -0.412( -3) 
6 -0.872(-3) 
I -0.136( -2) 
8 -0.189(-2) 
9 -0.249( -2) 

10 -0.320( -2) 
11 -0.404( - 2) 
12 -0.507( -2) 

LG3 0 0.763( -4) 
1 0.521(-4) 
2 0.368( -4) 
3 0.274( -4) 
4 0.219( -4) 
5 0.193(-4) 
6 0.189( -4) 
7 0.205( -4) 
8 0.241( -4) 
9 0.303( -4) 

10 0.400( - 4) 
11 0.545( -4) 
12 0.763( -4) 

0.119( -2) 
0.105( -2) 
0.959( -3) 
0.905( -3) 
0.888(-3) 
0.905( -3) 
0.955( -3) 
0.103( -2) 
0.115( -2) 
0.129( -2) 
0.148( -2) 
0.171(-2) 
0.199( -2) 

0.910( -4) 
0.723( -4) 
0.584( -4) 
0.482( -4) 
0.409( -4) 
0.358( -4) 
0.327( -4) 
0.313( -4) 
0.316( -4) 
0.336( -4) 
0.375( -4) 
0.436( -4) 
0.524( -4) 

0.112(-3) 
0.812( -4) 
0.549( -4) 
0.317( -4) 
0.105( -4) 

-0.969( -5) 
-0.298( -4) 
-0.508( -4) 
-0.736( -4) 
-0.993( -4) 
-0.129( -3) 
-0.165( -3) 
-0.208(-3) 

0.243( -4) 
0.197(-4) 
0.173(-4) 
0.165( -4) 
0.168(-4) 
0.184( -4) 
0.213(-4) 
0.258( -4) 
0.326( -4) 
0.425( -4) 
0.572( -4) 
0.789( -4) 
O.lll(-3) 

-0.144(-2) 
-0.124(-2) 
-0.109( -2) 
-0.985( -3) 
-0.920( - 3) 
-0.889( -3) 
-0.887(-3) 
-0.913(-3) 
-0.969( - 3) 
-0.105( -2) 
-0.118( -2) 
-0.134(-2) 
-0.155(-2) 

0.102( -3) 
0.789( -4) 
0.632( -4) 
0.523( -4) 
0.449( - 4) 
0.402( -4) 
0.382( -4) 
0.388( -4) 
0.424( -4) 
0.498( -4) 
0.621( -4) 
0.815(-4) 
O.lll(-3) 

0.703( -4) 
0.450( - 4) 
0.252( -4) 
O.lOO( -4) 
0.125(-5) 
0.921( -5) 
0.143( -4) 
0.166( -4) 
0.162( -4) 
0.130( -4) 
0.703( -5) 
0.766( - 5) 
0.234( -4) 

0.173( -4) 
0.981( -5) 
0.472( -5) 
0.996( -6) 
0.217( -5) 
0.519( -5) 
0.859( - 5) 
0.128( -4) 
0.185( -4) 
0.264( -4) 
0.377( -4) 
0.542( -4) 
0.785( -4) 

Note. (-a) SE lo-“. 
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(200 time steps), of a 2: 1 ellipse. In Table I we present the following temporally 
varying quantities: 

(1) Relative error of 52,) where 9, is the angle of the major axis divide 
time. To obtain this angle, we use the spline-second moment procedure described 
above. 

(2) Relative error of Q2,, where 52, is the angle of the point originally at (a, 0) 
divided by time. 

(3) The mean error in f, (see (5.12)), which represents the distortion of the 
ellipse. The mean error here is defined as (CkN_ 1 [&)““/N, f,,, is the value of l2 at 
the kth point, and its true value is zero for an unperturbed ellipse. We note that the 
LG, algorithm gives dynamic results that are more consistent with static results 
than the LG3 algorithm, i.e., p* N 3 w 1 minimizes most errors. Note, for the 
algorithms p * sz 4 minimizes dynamical errors (not shown). 

Table II shows the static 1, error of (u, u) for a 2: 1 ellipse, which corresponds to 
column 2 in Table I, all discretization methods are compared for N = 64, 128, 256, 
512 and the normalized ratio, eN/e5i2, clearly indicates that LG, is third order and 
the others are second-order accurate. 

TABLE II 

Study of the Order of Accuracy for a 2: 1 Unperturbed EIiipse with p = f 

Number of 
nodes N 32 64 128 256 512 

LGZ I, error eN 0.369( -2) 0.888( -3) 0.217( -3) 0.538( -4) 0.134(-4) 
in u, v 

eNle512 216 66 16 4 1 

Rl l2 error eN 0.365( -2) 0.883( -3) 0.217( -3) 0.538(-4) 0X4(-4) 
in u, 0 

e&12 213 66 16 .4 1 

R2 I2 error eN 0.288( -2) 0.655( - 3) 0.155(-3) 0.377( -4) 0.928( -5) 
in u, v 

eNle512 310 71 17 4 1 

=3 I2 error eN 0.347(-3) 0.409( -4) 0.501(-5) (X623(-6) 0.776(-7) 
in u, v 

eNh2 4476 526 65 8 I 

581/78/2-S 
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5.4. Temporal Comparisons 

We present here a comparison of temporal errors obtained with the fourth 
Runge-Kutta method. We use a 4: 1 unperturbed ellipse, the Rl algorithm, N= 128, 
and 60, 120, 240, 480 time steps in one revolution. The upper half shows the 
forward evolution and the lower half the return evolution. In Table III, the 
quantities shown are 

(1) error in rotation angle of major axis, 
(2) I, error in (x, y), 

TABLE III 

Temporal Study for a 4: 1 Ellipse with N = 128, p = 4, the Rl Algorithm, 
Forward One Revolution and Return to Zero 

Number of 
time steps (dt) 60(0.655) 120(0.327) 240(0.164) 480(0.0818) 

Error in rotation 
angle of major axis (degrees) 

(e, - e480Y(e240 - e4d 

1, error in (x, y) 

Relative error 
in area 

Relative error 
in maximum curvature 

Error in rotation 
angle of major axis 

(en - e480Y(e240 - e480) 
lz error in (x, v) 

Relative error 
in area 

Relative error 
in maximum curvature 

Forward to T = 39.27 

-0.101(O) -0.538( - 1) -0.509( - 1) 

286 17 1 

0.476( - 2) 0.336( -2) 0.327( -2) 
289 17 1 

-0.639( -4) -0.187(-5) 
1167 34 

-0.536(-3) -0.493( -3) 
141 14 

Return to Zero 

0.852( -2) 0.247( - 3) 

1161 34 

0.257( -3) 0.745( -5) 

1161 34 

-0.127( -3) -0.369( - 5) 

1166 34 

O.lSO( -3) 0.522( -5) 

1163 34 

-0.832(-7) 
1 

-0.489( -4) 
1 

0.757( - 5) 

1 

0.228( - 6) 

1 

-0.113(-6) 

1 

0.160( -6) 

1 

-0.507( - 1) 

0.327( -2) 

-0.285(-7) 

-0.489( -4) 

0.235( -6) 

0.709(-8) 

0.350( -8) 

0.495( -8) 
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(3) relative error in area, 
(4) relative error in maximum curvature. 

For each error e,, the following row is the quantity (e, - e480)/(e24,, - edgo), where sz 
is the corresponding number of time steps. We know that the Rl method is secon 
order accurate in space discretization. If the time discretization error is of order 
then we expect an error e as e = am + b(dt)‘, where a and b are constants, An is 
the typical space step and At the time step. Thus if Z=4 for n = 60, 120, 240. 
(e, - e280)/(e240 - eb8,,) = 273, 17, 1, respectively, and if l= 5, (e, - eGEO)/(eZbO - edgo) 
= 1057, 33, 1, respectively. If we examine the quantities (e, - e480)/(e240 - edgo) in 
Table III, we see after one revolution that the error in the rotation angle and the I2 
error in (x, y) are fourth-order accurate in time, the relative error in area is fifth- 
order accurate, and the relative error in maximum curvature is approximately 
fourth-order accurate. When we return to t =O, all quantities are ~~t~~~~rde~ 
accurate, which is the one-step error of the Runge-Kutta scheme [15]. 

5.5. Time Dependent Comparison for a Perturbed Ellipse (TDP) 

We use 2: 1 and 2:0.5 (4: 1) ellipses perturbed with m = 3, E = 0.01, and 128 points 
and compute with the Rl method. The 2: 1 ellipse is stable and the 4: 1 e 
unstable in linear theory. We choose E = 0.01, which is small enough for the linear 
expansion to be valid and large enough to be greater than the discretizatio~ error. 

In Section 5.2 we described how we found the numerical value of tz. To validate 
this approach of finding the major axis of the ellipse, we changed the angle of major 
axis by small amount (e.g., O.Ol”) in both directions and found the error in t2 
increases. This gave us the confidence that we were using an optimum metbo~ for 
finding the effective extra angle of the major axis, 

The results in Table IV are: 

(1) Stable (2: 1): The relative error in average wave speed after one 
revolution. The average wave speed is obtained in the following way: after obtain 
ing the numerical value f2, we determine the six extrema in t2 by spline inter- 
polation, the travelled distance of the extrema from t = 0 to the present time 
by time gives the average wave speed ck (k = l-6) of the perturbation wave, and WC 
then obtain the mean of those wave speeds and compute the relative error of the 
mean wave speed. Note that the true values are found from (5.10) and (5.11) in 
same way. 

Unstable (4: I): The relative error in the average wave amplitude after I/ 
revolution. We find the six extrema and find the mean of the six absolute values o 
these extrema (the amplitude of the wave) and compute its relative error. 

(2) I, error in f,. 

Because of the exponential increase of the wave amplitude, the linear theory is 
not valid for a long time in an unstable case. From Table IV, we see the minimu 
error occurs at p* , when & < p* < 6. 

Figure 2 shows the perturbation wave t2 (2: 1 ellipse) and Fig. 3 shows the 
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TABLE IV 

Comparison of 2: 1 and 4: 1 Ellipses with N = 128 Nodes, 
the Rl Algorithm and a Perturbation r*(O) = 0.01 cos 31 

12p. 

2:l 4:l 

Relative error in l2 error Relative error in I2 error 
wave speed in tz wave amplitude in Tz 

0 0.209( -3) 0.569( - 1 
1 0.186( -3) 0.494( - 1 
2 0.164( -3) 0.449( - 1 
3 0.146( -3) 0.425( - 1 
4 0.132(-3) 0.414( - 1 
5 O.lZl(-3) 0.411(-l 
6 0.114( -3) 0.414( - 1 

0.637( - 1 
0.366( - 1 
0.201(-l 
0.144( - 1 
0.185(-l 
0.262( - 1 
0.358( - 1 

7 O.lll(-3) 0.418(-i) 0.482( - 1 1 
8 0.112(-3) 0.425( - 1) 0.656( - 1 
9 O.l16( -3) 0.436( - 1) 0.911(-l 1 

10 0.125( -3) 0.452( - 1) 0.130 
11 0.139(-3) 0.479( - 1) 0.191 
12 0.158( -3) 0.523( - 1) 0.287 

0.129 
0.895(-l) 
0.666( - 1) 
0.534( - 1) 
0.456( - 1) 
0.414(-l) 
0.405( - 1) 
0.449( - 1) 
0.576( - 1) 
0.823( - 1) 
0.124 
0.190 
0.294 

Note. For 2: 1, dt = 0.141 and T,= one revolution. For 4: 1, At = 0.164 and TF= i revolution. 

00,5- t=o.oo 

$2 0 1 lyri ( 
x 2x ? 

-0.0’5; t = 7.07 

FIG. 2. The perturbation wave t2 vs q for a 2: 1 ellipse, with the R2 method, N= 64, p = f, 
At = 0.14137, E = 0.01. 
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FIG. 3. The logarithm of the mean amplitude for 4: I ellipse with the Rl method, N = 128, p = 0, 
At = 0.16362, E = 0.01. 

logarithm of the mean amplitude of the wave (4: 1 ellipse), where the solid line 
represents tbe analytical solution and the circles are the numerical solution. 

5.6. Proper Configuration for Ellipse 

From the results shown above, we see the case p = $ has a special advantage, 
especially for the unperturbed ellipse. The reason is that when p = 4, the node con- 
figuration is stationary relative to the ellipse. This can be seen from (X5), since the 
relation between ,U and q is linear when p = 4, and the points are equally spaced in 
q. The particle path relative to the rotating ellipse is given by 

x’ = a cos(L?t + qo), 

y’ = b sin(Ot + qO), 
(5,114) 

where qO is a parameter. At any time t, (at + v],) serves as the elliptical coor 
y. Thus, the difference of q for adjacent points is invariant with time. That is, if the 

FIG. 4. The forward-and-return evolutions for a 4:l ellipse with the RI method, N= 64, P=B 
dt=O.16362, ~=0.01. 
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FIG. 5. The forward-and-return evolutions for a 4:l ellipse with the Rl method, N= 64, p= 1, 
At = 0.16362, E = 0.01. 

points are equally spaced in q at the initial time, they will keep this configuration 
for a time in which an ellipse or near-ellipse represents the curve as seen in Fig. 4. 
In Figs. 4 and 5, we compare forward-and-return evolutions for a perturbed 4: 1 
ellipse with p = f and p = 1, respective. In the former case the node distribution is 
nearly invariant (e.g., for t < 19.63). While in the latter case it is evident that the 
dense grouping of points moves around the ellipse. For example, at $ revolution, the 
high curvature region is poorly resolved, thus enhancing error growth. 

6. ~-FOLD SYMMETRIC V-STATE-INITIAL NODE PLACEMENT 

We now examine the generality of the preceding result on stationarity of the 
nodal distributions by studying 4-fold symmetric v-state (4FSV). We obtain such a 
state with an aspect ratio 1.24418 (Q = 0.36620) using iteration method of Wu et al. 
in [ 111 and approximate it by 

R(8) = f a, cos(4nQ. (6.1) 
It=0 

We distribute the points at t = 0 according to formula (3.1) as with the ellipse 
case. We compute the solution for one revolution (T= 17.16) using Rl with 
N= 128 and At = 0.143 and the fourth-order Runge-Kutta method. 

Table V gives the results, including: 

(1) relative error of “global angular velocity” obtained from the major axis of 
the ellipse. To obtain this major axis, we first rotate the coordinate system by the 
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TABLE V 

Comparison of 4FSV, Rl, 128 Points, One Revolution 

QP 

I2 error 
in R AA/A 

0 0.903( - 3) 0.641(-3) 0.149( -6) 
1 0.718( -3) 0.323(-3) -0.265( -6) 
2 0.623( -3) O.lOl(-3) 0.468( -6) 
3 0.597( -3) 0.229( -3) 0.105(-5) 
4 0.637( - 3) 0.498( -3) -0.1871-7) 
5 0.753( -3) 0.841( -3) -0.554(-5) 
6 0.964( - 3) 0.129( -2) -0.215( -4) 
7 0.130(-2) 0.188( -2) -0.607( -4) 
8 0.178( -2) 0.260( - 2) -0.147(-3) 
9 0.243( -2) 0.342( -2) -0.318(-3) 

10 0.323( -2) 0.430( -2) -0.610( - 3) 
11 0.417( -2) 0.521( -2) -0.104(-2) 
12 0.521( -2) 0.610( -2) -0X7(-2) 

amount at and compute R = R(B) in this system. We then calculate the Fourier 
expansion of R(6) and change the rotation angle, and thus the coordinate system, 
by suppressing the sin(4B) term in the new system. 

(2) l2 error in R, which is the polar distance of the curve. 

(3) relative error in the area. 

From Table V we see the minimum error occurs about 4 < p* <a, close to the 
ellipse case. Looking at the plots, we found that p = 8 corresponds approximately to 
a stationary configuration. Figure 6 shows the case with p = 4 for one revol~t~~~. 

t=o.oo t=2.14 t=4.29 i=6.43 

t=s.s3 t=10.72 t=12.t37 t=15.01 

FIG. 6. The rotation of a 4FSV with aspect ratio 1.24418 (0=0.36620), the RI method, N= 128, 
p = $ At = 0.143. The triangle symbol denotes the position of the point initially located at 4 = 0. The last 
panel shows the trajectory of the point initially at 4 = 0 for 0 < t < 17.16. 
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The triangle symbol denotes the position initially located at 4 = 0 (4 is the polar 
angle) and the last plot shows its locus, which is a circle. In one revolution of the 
curve this point has traveled about 87t/3 radians. 

6. CONCLUSION 

We have made a systematic study of spatial discretization errors of several con- 
tour dynamical algorithms for the Euler equations and established their order 
accuracy. As benchmarks, for these calculations we have chosen mainly the 2: 1 and 
4:l Kirchhoff elliptical vortices and such vortices subject to small (linear) pertur- 
bations. We have carefully investigated the effect on errors of initial placement of 
nodes, where the internodal distance was proportional to (curvature)-P. We have 
found for the ellipse that p z 4 causes the smallest errors because it yields a node 
distribution which is time invariant. This is a new concept which we have also 
verified for the m = 4 V-state, where 4 < p < 3. We believe this idea will be useful for 
adaptive (time-dependent) node-placement algorithms and we will explore these in 
a future paper. 
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